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1 Fields as extra dimensions

Gradients are familiar in the actions of fields, though without an explanation of
their origin. Special Relativity has answered a comparable question at the level of
objects: in abstract spacetime (t, x⃗), where t is time and x⃗ is position in 3-space, live
objects sweeping out concrete world lines x⃗n(t), the index numbering the object.
The length of these world lines can be computed by - in this case rather rudimentary
- Gauss’ formula for the metric on embedded manifolds, what yields derivatives of
x⃗ w.r.t. t if one simply choses t to parametrize the curve. The action of an object is
the length of its world line multiplied by its mass.

The same mechanism escalated to the level of fields is: there is an abstract
”embedding space” (t, x⃗,Θ) ≡ (xµ ,Θ) with µ = 0,1,2,3 and Θ denoting the en-
tirety of fields, in which live concrete fields each sweeping out a 4-dimensional
submanifold Θn(xµ). For example, for a sole vector field A (index supressed) there
are 4 field equations Aµ(xν), and all the non-vector fields set zero. The 4-volume
of any such ”field manifold” can be computed by Gauss’ formula for the metric on
embedded manifolds, once the metric of the embedding space has been specified.
The action of the field is the 4-volume of its field manifold multiplied by some
constant. So one is drawn to the conclusion that the fields are extra dimensions
attached to spacetime.

Developing the idea for vector fields unveils an intimate connection to the
Born-Infeld theory [1, 2, 3], as shall be discussed elsewhere. Here, the quintessence
shall be demonstrated using scalars Φ despite of some problems associated. Mass
and further self-interactions only can be added by hand in a clumsy way, just like
potential terms are cumbersome in Special Relativity. But it is nothing new that
the production of masses of field quanta requires additional concepts anyway. Re-
garding only scalars, a 6-dimensional embedding space is sufficient. A plausible
metric reads, denoted in terms of the line element
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where mpl is the Planck mass and ℓpl is the Planck length, respectively, with
h̄ ≡ mplℓpl . The asterix means complex conjugation. The undetermined sign of
the second term shall indicate that Φ can be spacelike (likely) or timelike. Fur-
theron, only one sign will be used, which eventually has to be brought in line with
the sign convention for spacetime. Here and everywhere except exlicitly stated
otherwise, the indices are moved by the metric of spacetime gµν . Unfortunately,
the conversion factor is not free of ambiguity. Without doubt, it is of Planckian
order of magnitude, what means that Newton’s constant G ≡ ℓpl

mpl
is involved, i.e.

mplℓ
5
pl ≡G2h̄3. But there could be some individual factor order of magnitude unity,

as it turns out naturally for the vector fields.
The application of Gauss’ formula yields for the induced metric γ on the 4-

dimensional submanifold determined by the two field equations Φ(xµ) and Φ∗(xµ),
where the index n = 1 of the one and only field regarded is supressed

γµν = gµν +
mplℓ
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The determinant of γ is

detγ = (detg)
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So the action of a single concrete scalar field, which is the 4-volume of the field
manifold up to the appropriate forefactor reads up to the fifth power in the Planck
length
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2 Field equations

The general formula for the derivative of any nonvanishing determinant reads

∂ detγ

∂x
= (detγ) γ

k̂l̂ ∂γkl

∂x
, (5)

where the hat on the indices shall indicate that these clearly are moved by γ , i.e.
γk̂l̂γ

l̂m̂ = 14 while γk̂l̂ ≡ γkl remains unchanged. Furthermore, we have

γ
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where there now is a hat on µ .
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This yields the field equation in the familiar form
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= 0 . (7)

The second field equation is just the complex conjugate. Both can be combined as
usual to
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3 Broken symmetry

The field equations reflect the symmetry of the line element (1). All the references
are to the internal metric γ , there is no reference to the metric g of spacetime, where
the observers live. But this is not the whole story. In Special Relativity, the line
element reads dτ2 = dt2 − d⃗x2, and the position x⃗ of any object has no influence
on time t. Here, in contrast, the fields Θn (n running from 1 to the total number
of fields) determine something that happens inside spacetime xµ . This means that
spacetime is a preferred frame of reference inside the 6-dimensional embedding
space. Only if two different universes, each having its own position and orientation
inside the embedding space, collided, the symmetry would become restored.

Since the frame is preferred, so is the stress-energy associated with it. The
cosmological term is locked to our universe and its value cannot be changed by
any coordinate transformation. So it can be subtracted from the action of the fields,
whereas the nonlinearities remain. The action for a sole scalar reads, much like
Born and Infeld had proposed for vectors on a phenomenological basis
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(9)
This gives a clear explanation why the vacuum does not gravitate when the Einstein-
Hilbert Lagrangian is added.

4 Relation to second quantization

The cosmological term is nothing but the vacuum energy density of the fields,
above quasi approached through the backdoor on a “classical” route. Currently the
tension is low, since noone knows the actual values. But there is only consistency
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of the big picture if the value appearing in equation (4) is exactly the same as is
derived from quantum physics of the respective field. Is this realistic?

It was already discussed that the mechanism here is an escalation of the mech-
anism underlying Special Relativity, from the physics of objects living in time to
the level of fields living in spacetime. From this similarity originates one very
strong indication that the above sought identity actually is fulfilled. The role of the
cosmological term here is comparable to the role of the rest mass term in Special
Relativity. When a harmonic oscillator is treated relativistically in a fully consis-
tent manner, this leads to a SO(2,1) symmetry, what directly progresses to the level
of quantization: not the Heisenberg algebra is the quantum algebra of a relativistic
oscillator, rather SO(2,1) is. So, upon quantization, it turns out that mass simply is
the ground state energy of the oscillator and is a quantum number in units of the
energy quantum proportional to the frequency parameter [4, 5, 6] .

5 Conclusion

The idea of extra dimensions has been around for more than a century, without
final conclusion. But the underlying assumption has always been that these extra
dimensions are like spacetime in the essence, only with high extrinsic or intrinsic
curvature. But Special Relativity taught that things could be more subtle: the po-
sition of an object is something very much different from time. Here, spacetime
and fields living on it are unified like space and time are unified there. The mech-
anism explaining where the derivative terms in the actions come from is almost
compelling, hence it could be wise to follow up on it. Scalars and vectors can be
treated well, whereas gravitation and fermions require additional considerations.
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