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Abstract

It is argued that the quantum algebra can be derived from SO(3) by
contraction in the sense of group theory with well perceivable meaning
of the involved parameters.
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Apart from quantum gravity and string theory, the discussions have
focused more on interpretations of the historic quantum theory than on
modifications. However, it had been Hilbert’s immediate criticism that the
quantum algebra appears as mathematically rather unsound. Here I shall
argue that the still used quantum algebra indeed is only an accurate ap-
proximation to the true one.

“Contraction” is a mechanism for the modification of algebra and group
structures via singular transformations as discussed in [1]. In the case of
SO(3), the starting point is the familar generator algebra (here written in
terms of the ladder operators J±)

[J+, J−] = 2J3 [J3, J±] = ±J± . (1)

One can apply a coordinate transformation resulting in h± = a · J±, conse-
quently the commutators become

[h+, h−] = 2a2J3 [J3, h±] = ±h± . (2)

In the singular limit where the pure number a approaches zero, h+ and h−
commute and the algebra degenerates. Gilmore illustrates the effect in terms
of the Little Prince whose outreach relative to the Earth’s circumference
naturally defines the contraction parameter a. The Little Prince is so tiny
that Earth appears as flat to him. This reminds of man in the course of
history. But I would like to clarify that in general the human origin of the
yardstick is not the central ingredience of a contraction mechanism, as can
be seen from the following.



The same reference gives a contraction mechanism from the algebra of
U(2) towards the quantum algebra h4. It is equally transparent in the
mathematical sense, but in contrast to the above it lacks interpretation.
Conjugate variables are identified with h+ and h− above, but neither the
meaning of the contraction parameter nor the postulated mixing in of the
radial degree of freedom can be understood so far.

It shall now be demonstrated that a contraction from SO(3) is sufficient
and well understandable. First, in the above I identify a2 = 1

2j , where
j(j + 1) is the huge eigenvalue of the operator of “spin” squared. j can be
integer or half integer, without change of the essence. It can be clarified
that the familiar names are used for the involved quantities, but they are
not with reference to ordinary space, rather to phase space. In terms of
an appropriate basis, 2a2J3 = −I + 1

j · diag(2j, 2j − 1, .....1, 0) := −I + h3,
where I is the unit matrix. Second, I assume that the relevant values of
the “magnetic” quantum number are low, this means in the second term
one is situated close to the right end, so h3 appears as order of magnitude
j−1. Consequently, in the singular limit h3 becomes invisible in the first
commutator. In the other commutators, only h3 is relevant, since I trivially
commutes with all generators. The result is the standard quantum algebra

[h+, h−] = −I [h3, h±] = ±h± , (3)

where h± are isomorphic to bosonic creation and annihilation operators,
respectively, and h3 is isomorphic to the particle number operator.

Now one reckognizes that the identity matrix appearing in the first com-
mutator is just the vacuum energy renormalized away. Obviously, this parti-
tion of nature into “action” and “energy” does not reflect the true symmetry,
where only the entire J3 appears.

Notation and language in terms of ladder operators were used as a matter
of convienience. However, it must be clarified that the above does not refer
to fields. Rather it is to be interpreted at the level of first quantization, this
means of space(time) itself. Space is bosonic, and the associated phase space
is related to the ladder operators in the well known way h± ↔ q∓ıp√

2h̄
, with

standard meaning of the symbols. The role of time is less straightforward,
but this shall not be the topic here, like the implications at the level of fields.

References

[1] Gilmore R, Lie Groups, Lie Algebras and some of their appli-
cations, John Wiley & Sons, New York (1974)

2


