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Abstract. It is argued that the underlying symmetry of gravitation is much like
that of special relativity. That is, the Planck length mediates a symmetry between
spacetime and field degrees of freedom in a flat background space, just as the speed
of light in special relativity mediates a symmetry between space and time. The action
of this theory appears as the 4-volume of an embedded manifold in the background
space.
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Cosmological data point to an “admittedly weird composition of the universe” [1, 2].

At the same time, the problems of quantum gravity [3] and interpretation of quantum

physics [4] remain open. Recent evidence indicates that general relativity needs some

adaptation, even in its classical segments [5, 6, 7, 8]. If true, this would destroy all its

majesty, while it is unclear which set of ground rules alternatives to general relativity

should satisfy [9]. The numerous “darknesses” of the universe may well have their source

in the strange symmetries underlying gravitation and quantum theory, which stand in

sharp contrast to the transparent symmetry of special relativity’s line element. This is

especially intriguing if we consider evidence that all physical concepts and even pure

numbers rest on the same footing [10, 11, 12]. Could the introduction of symmetries

similar to that of special relativity bring the desired leap of understanding?

The focus of this note is on gravitation, where currently Newton’s constant appears

in the identity of the Einstein tensor with the averaged stress-energy tensor, but not in

a line element. The alternative proposed here is that spacetime and the gravitational

field span a space equipped with an invariant line element involving these both concepts.

The space described by this metric lies beyond any gravitational structures, so it is flat;

it acts as a non-dynamic and eternal background space. A mathematical theorem states

that a flat embedding space exists (!) for any curved manifold of whatever physical

meaning [13]. It is also known that a space is intrinsically flat iff there exists one

coordinate system which has direct meaning of distances or angles [14].

The background-dependence may be a source of immediate scepticism. However,

it opens the door to sanative consequences. The Lagrangian will be expressed purely in

terms of positions in the flat background space. The metric on any embedded manifold

can then be deduced by virtue of Gauss’ theorema egregium, but is not allowed to
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fluctuate independently. Consequently, to avoid high-order derivatives, apart from an

overall multiplicative constant the field action is simply the induced volume of the

embedded manifold. Since the curvature scalar R does not appear, this theory might

be called “R0 gravity”.

The resulting model has concepts in common with string and brane theories [15, 16],

although their roles are mutated to fit the context. The number of degrees of freedom

associated with the gravitational field, as well as their coupling to the sources, are not

determined a priori. The aim of this note is to demonstrate the principle of this class

of theories using the most convincing example of a 4-component field with vector like

coupling. The field degrees of freedom shall be denoted A, and be pure (dimensionless)

numbers. This leads to the following coordinate representation of the line element of

flat background space:

ds2 =
8∑

a=1

dΞadΞa =
3∑

µ=0

dxµdxµ − `2
3∑

ν=0

dAνdAν (1)

The greek indices indicate the familiar Minkowski metric of flat, four-dimensional

spacetime, with the velocity of light set to unity. The differing signs turn out to be

necessary to achieve reasonable solutions, resulting in an embedding space of maximum

symmetry with metric signature (++++ - - - -). ` is a conversion factor with dimension

of length, for which the Planck length—up to factors of order unity—is the only serious

candidate. The involvement of Planck’s constant sheds new light on gravitation and all

related concepts.

Four embedding equations are required to define a four-dimensional “field manifold”

M, which will be a subspace of this flat space. The metric signature of M is (+ - - -),

where the overall sign is a convention. The induced volume is

VM =
∫ √√√√∣∣∣∣∣det

∂Ξa

∂ξµ

∂Ξa

∂ξν

∣∣∣∣∣ d4ξ , (2)

where ξ symbolizes a degree of freedom of the field manifold. In the noncosmological

approximation, the ξ can be identified with the x in (1).

The field manifold is not a solution to the field equations of General

Relativity. Neither is the induced metric on the field manifold equivalent

to the gravitational field. Rather, apart from cosmological curvature, our

observable spacetime can be identified with the flat subspace parametrized

by the x above. The A play the role of a gravitational field, in that the action

is varied in terms of these variables. What one sees as the worldsheets of

sources are in fact singularities of M projected onto our spacetime x.

The continuous symmetries present in the action (2) are the generalized Poincaré

symmetry of the eight-dimensional embedding space, and the diffeomorphism invariance

of M. This fits with gravitation. A field action which has similarities to a vector

theory, arises as an approximation to (2), just as classical mechanics arises from special

relativity. After renormalization by subtracting the four-volume of flat spacetime, one

finds that this approximate action differs from that of electrodynamics. In particular,
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Table 1. Correspondence between quantities in special relativity and R0 gravity. The
greek indices follow the Minkowski metric in four dimensions.

Special relativity R0 gravity

Time t Spacetime xµ (flat apart from cosmological curvature)
Spatial position ~x Gravitational field Aν

Velocity of light c Inverse fundamental (Planck) length `−1

Flat spacetime Flat embedding space
Trajectory ~x = ~x(t) Field manifold Aν = Aν(xµ)
Proper length τ of trajectory 4-Volume VM of field manifold
Velocity vector Induced metric tensor on the field manifold
Mass “Cosmological′′ constant

Newton′s constant

dτ ≈ (1− ~̇x
2

2c2 )dt dVM ≈ (1− `2

2 ∂µAν∂µAν)d4x

it lacks the divergence (gauge) term. Some correspondences of this theory with the case

of special relativity are listed in Table 1.

The fundamental static (in the sense that only one field component does not vanish)

solutions to the action principle for a generalized number of dimensions are denoted φ(r),

where φ is the field. It depends only on the radial component r in fully Euclidean (here

called space-like) space, which in addition to r is parameterized by n angles. Hence, the

volume of the n + 1-dimensional field manifold M̃ is VM̃ ∝
∫ √∣∣∣∣1∓ ( ` dφ

dr
)2

∣∣∣∣rndr. The

sign in front of the squared field derivative depends on whether the field is time-like or

space-like. The first integration of the field equation yields(
` dφ

dr

)2

=
1

1−
(

r
rmax

)2n ,

(
` dφ

dr

)2

=
1(

r
rmin

)2n
− 1

(3)

for both time-like and space-like φ, where the two solutions correspond to manifolds of

maximum and minimum volume respectively. rmax and rmin are constants of integration.

These values represent branch points, where the derivative of the field is infinite. The

n-sphere where this singularity is located shall be called the “terminator”. Figure 1

gives a sketch of these solutions.

The source terms describing the divergence of the field are proportional to the

terminator n-volume in both cases. For the time-like field, the source is located at the

“Big Bang”, or r = 0.

For the space-like field, it is sensible to locate the divergence at the terminator.

This yields a second n + 1-volume in addition to those of the respective field manifold,

as is indicated in Figure (1) by the vertical line. These two parts of the manifold carry

opposite signs, however, in analogy to the familiar relation 4
(
+1

r

)
= −4πδ(~x). If the

volume of the field manifold is counted positive, then the source term is proportional

to −|φ(rmin| irrespective of the sign chosen for φ, and vice versa. φ(rmin) is the value

at the terminator if approached from outside, starting from φ(∞) = 0. The additive

constant of integration will be addressed later.
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Figure 1. Fundamental solution for the time-like (dotted line) and space-like (full
line) fields, for a specific choice of their respective branches and second constants of
integration. The point marked by the arrow, factually an n-sphere, is the terminator.
The vertical line symbolizes a source term for the space-like field, contributing with
opposite sign. The line element in this plane is ds2 = −dr2 ± `2dφ2, where the overall
sign is a convention and the ± refers to time-like and space-like solutions respectively.
At r = 0 the slope is 45 degrees, while at the terminator it becomes infinite. φ � const

rn−1

for n > 1.

These fundamental solutions have two especially important configurations. The

first is the time-like field for n = 3, which describes an idealized universe where space-

like sections at a given cosmological time are 3-spheres. In this case, however, the

grouping of degrees of freedom specified in (1) is not appropriate. Rather, time itself is

a field extending over the four-dimensional, fully Euclidean subspace of the embedding

space. This field manifold is identical with curved spacetime in the approximation

of spatial homogeneity and isotropy. All quantities have the dimension of length and

consequently the Planck length plays no relevant role. The properties and relevance of

this or other cosmological solutions shall be discussed elsewhere. Another point I shall

not discuss here is how to unify the cosmological solution with the noncosmological

approximation. The focus is the noncosmological approximation alone, based on the

grouping of coordinates in (1).

The second important case involves a massive, non-rotating point source described

in its own proper rest frame. This static configuration is thus translation invariant along

x0, and any other time-like degrees of freedom vanish. In this scenario x1, x2 and x3

build up a basic Euclidean space which is mapped into A0. The corresponding solution

is the space-like field with n = 2, where φ ≡ A0 can be asymptotically identified with

the Newtonian potential. Here rmin =
√

`GM , where G is Newton’s constant and M

is the mass of the point source. Furthermore, `|φ(rmin)| = brmin. In this expression,

b =
∫∞
1

dx√
x4−1

= 1, 31 . . .. The free particle term inducing an attractive force can be

obtained from the substitution |φ| → |φ| − 1, which can be associated with the second

constant of integration. As a function of M , |φ(rmin)| − 1 changes sign at the Planck

mass, if ` is b2 times the Planck length.

Including the x0 coordinate, the field manifold and source terms are both 4-

dimensional, which can be generalized to include an arbitrary number of sources. This

makes the total action S ∝ VM +
∑

n Vn, where the sum is over all sources, and the

relative signs were discussed earlier. Any terminator must be locally orthogonal to the
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spacetime trajectories of its points, since tangential motions would leave the terminator

unchanged and thus can be considered unphysical in the context of the action. Since

the field is orthogonal to space-time, the “vector” coupling term ±`Aµdxµ is actually a

sum over infinitesimal two-dimensional subvolumes of the embedding space orthogonal

to the terminator. The value of this sum is invariant under coupled rotations in the x

and the A subpsace.

Despite this specific symmetry, there are reasons to believe that this is an

appropriate source term. Mass makes sense as a conserved quantity at the level of

individual sources. Its non-conservation originates from the interaction of worldsheets.

Each source of nonvanishing mass contributes

Vn = `
∫

(uµ ± Aµ)dxµdV termi
n , (4)

where V termi
n is the 2-volume of the corresponding terminator—this is a space-like

submanifold of spacetime with topology of a sphere where the singularity of the field

is located. Mass does not appear explicitely. u is the relativistic four-velocity of any

point at any terminator, and is derived from the coordinate velocity vµ = dxµ

dx0
= (1, ~v).

The ± indicates the invariance of the dynamics under a global choice of this sign. The

unphysical infinite self-force on the terminator can be avoided if a source-free field is

defined on the region inside the terminator and is used for the purpose of calculating

forces. The actual values of the field components at the terminator serve as “Dirichlet”

boundary conditions for this source-free field.

Since the free particle term is based on the square of the four-velocity, the above

expression covers massless sources as well. As usual, uµ has to be replaced by vµ with

vµv
µ = 0. The terminator of a single source then reduces to a circle whose diameter is

proportional to the energy, in close analogy with the Aichelburg-Sexl shockwave [17].

This implies the substitution dV termi
(2) → ` · dV termi

(1) , where the subscript now indicates

the dimensionality.

In the Newtonian approximation, the terminator area is 4π`GM and ~v is constant

over the terminator. The free particle term located on the particle world line becomes

V = 4π`2GM
∫ √

1− ~v2dx0, which is further reduced to −4π`2GM
∫ ~v2

2
dx0. The

volume of the field manifold is approximately
∫ √

1 + (`∇A0)2d4x, which reduces to

`2
∫ (∇A0)2

2
d4x. The force is mediated by the coupling term ±4π`2GM

∫
A0dx0.

If the proportionality between the four-volume and the action is expressed in

terms of the “cosmological constant” as dS = Λ
G
dV , then the Newtonian limit implies

Λ = −`−2. While the absolute value appears as plausible, the sign is questionable, since

the static field manifold is a minimum surface. The discrepancy can be resolved from the

observation that the homogeneous and isotropic universe is a saddle point of the action.

This suggests a purely imaginary value, which is possible since Λ does not enter any

equation of motion. There is an explanation for this result, where the Lagrangian and

consequently the Hamiltonian remain real. The metric determinant of 4-dimensional

spacetime as well as of M is always negative, hence
√

det g = ±ı +

√
| det g|, where g is

the relevant metric.
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[13] Pavšič M and Tapia V 2001 arXiv:gr-qc/0010045
[14] Jin He arXiv:astro-ph/0604084
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